

BULLETIN D'INFORMATIONS DES RADIOAMATEURS ACTIFS EN HYPERFREQUENCES

N°207 OCTOBRE 2014

F5PL/P JA d'août 2014

SOMMAIRE:

_	INFOS HYPER PAR JEAN-PAUL F5AYE	2
_	MESURE DU FACTEUR DE BRUIT À L'ANALYSEUR DE SPECTRE PAR JEAN-PAUL F8IC	4
-	LA PAGE DES MILLIMÉTRIQUES PAR ERIC F1GHB	6
-	ENREGISTREMENT DE VARIABLES SUR LONGUE DURÉE PAR ANDRÉ F9HX	12
-	LES BALISES HYPER PAR MICHEL F6HTJ	17
_	JA 1,2 ET 2,3 GHZ DES 30 ET 31 AOÛT 2014 PAR GILLES F5JGY	18
_	IA 5.7 GHZ ET + DES 30 ET 31 AQÛT 2014 PAR JEAN-PAUL F5AYE	19

Edition et page 1 Jean-Paul PILLER f5aye@wanadoo.fr	Infos Hyper Jean-Paul PILLER f5aye@wanadoo.fr	Balises Michel RESPAUT f6htj@aol.com
Toplist, meilleures 'F' Eric MOUTET f1ghb@cegetel.net	J'ai lu pour vous Jean-Paul RIHET f8ic jean-paul.rihet@orange.fr	Abonnement PDF Yoann SOPHIS f4dru@yahoo.com
Balisethon Yoann SOPHIS f4dru@yahoo.com	1200 et 2300 Mhz J.P MAILLIER- GASTE f1dbe95@gmail.com	CR's Gilles GALLET f5jgy gi.gallet@voila.fr Jean-Paul PILLER f5aye@wanadoo.fr

Tous les bulletins HYPER à http://www.revue-hyper.fr/

INFOS hyper par Jean-Paul F5AYE

Activités Hyper

De Dom F6DRO/31

La saison RS se prolonge en dehors de la période habituelle :

20 septembre balises: F1ZAI, F5ZGV, F5ZBB, stations: F6DKW, F5DQK, F5HRY, F6FAX/P,

F1RJ, F5AYE/P (JN25), F6DZK, F1CNE, F6APE, F6DQZ.

21 septembre balises: F5ZFS, F5ZEP, F5ZPS, F5ZWM, stations: F6DKW, F1RJ.

10 octobre balises: F5ZWM, F5ZBA.

12 octobre balises : F5ZEP, F5ZBA, F1ZAI, F5ZBB, stations : F5DQK, F6DKW, F1USF. Ouverture tropo le 23 octobre en 2m suivie d'une deuxième le 24 octobre en 10 GHz avec les balises de JN05 et JN06 à 599++ et F1ZAI à 519, mais ça n'allait pas plus loin que JN07.

Sinon, les projets continuent, la nouvelle FI fixe est terminée et je vais me remettre au travail sur le pylône n°3, celui destiné au 23, 13 et 6 cm.

Balises

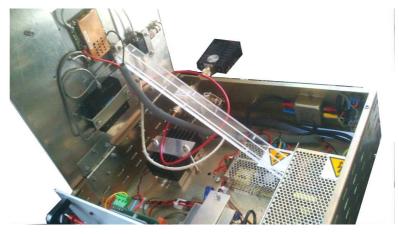
De Jean-Noël F6APE

L'ARML a le plaisir de vous informer de la remise en service des deux balises SHF F5ZYK 5760,949 et F5KLP 10368,886 sur son site en IN97RL

Après de longues démarches pour avoir l'autorisation de faire de la maintenance sur un immeuble de la ville d'Angers où est situé le R.C F5KLP, une équipe a travaillé pour la communauté... Vu les contraintes, il sera de plus en plus dur d'intervenir d'où une réflexion sur la possibilité de trouver un autre site dans l'avenir...

Il nous fallait descendre un pylône sur cette terrasse pour nouvelle installation de l'ensemble, puis remettre l'ensemble en fonctionnement dans l'après-midi.

L'évolution consistait à revoir entièrement la mécanique de la balise 10 GHz pour adjonction d'un système de ventilation et d'un ampli. La balise a pris un peu d'embonpoint, elle est passée de 200 mW à 2 W.


Malheureusement, l'opération terminée, on constatait une émission avec modulation désagréable et un spectre de type 50 Hz et multiples. Il a été décidé de laisser dans l'état (pas de possibilité de refaire l'ensemble des opérations). Pas d'explication à ce jour, phénomène non présent avant la mise en place ; si elle perturbe nous la couperons.

Il serait très agréable de recevoir des reports d'écoute suite à ce week-end d'activité sur nos deux balises. Une cartographie des départements ayant entendu nos balises est tenue à jour. Merci d'avance pour ces contrôles (à envoyer sur mon mail jns.f6ape@sfr.fr).

De Jack F6AJW

Pour info, Josemi EA2TZ est intervenu le 20 octobre 2014 sur la balise EA2TZ/B et annonçait sur le "chat" ON4KST être passé sur les 2 Big-wheels données par Jean F6CBC (à la place de la bi-quad devant réflecteur utilisée jusqu'ici). Pour moi, situé à une trentaine de km, cela ne semble pas changer grand-chose ; par contre avec une antenne pointue, je détecte très bien un écho important en provenance du pylône TDF de la Rhune (905 m) mais il n'y a pas une différence angulaire importante.

EA2TZ/B 1296,855 MHz IN93BF88cp 650 m ASL 10 W.

Projets HYPER en cours chez nos lecteurs.

De Jean-Louis F1HNF

Je suis en train de me faire mal mais je l'ai bien voulu. En effet, je suis en grande construction mécanique de la partie tête 76 GHz avec l'arrivée du 38 GHz en WR 28 pour le futur transverter 76 GHz.

Pour cela, j'utilise un boîtier alu dit "universel" proposé par Sylvain F6CIS il y a quelque temps.

J'aurai pu aussi acheter chez DL2AM le boîtier ad hoc mais je préfère cette solution.

De Michel F1SRC

Je suis en cours de montage de ma station 6 cm, ça prend du temps, maintenant ça sera pour 2015.

Les éléments sélectionnés sont les suivants :

Transceiver FI: FT-817 / Transverter: DB6NT 5,7 G2 / Ampli: DG0VE 4 W / Séquenceur: SEQ3 / Relais coaxial Radiall 18 GHz / Source 5,7 GHz: http://www.antennasamplifiers.com/5.1-5.9GHz-WLAN-WiFi-Antennas/Feed-Illuminator-satellite-offset-dish-fd-0.5-0.8, une parabole Visiosat de 75 cm et un trépied de géomètre.

Voir http://blog.f1src.org/page/hyper_station_6cm.htm mis à jour en fonction de l'avancement des travaux.

De Jean-Paul F5AYE

F4CXQ et F5AYE projettent la fabrication d'antennes à fentes 10 GHz, HB9RXV / F4WAG fait don de 3 mètres de guide WR90 laiton. Les antenne reviendront au prix de l'usinage et quelques euros pour le Balisethon. Elle ne comporteront que du guide avec fentes, à charge de l'acquéreur de les terminer. Réserver à mailto:f5ave@wanadoo.fr

Ma nouvelle station portable 23 cm est opérationnelle, il me reste encore à remplacer l'oscillateur du transverter par un OCXO, mais je suis dorénavant QRV 23 cm 150 W en portable.

Le projet suivant est une station légère 10 GHz : parabole 50/60 cm prime-focus, source feed/back, 4 W, IC202, trépied de géomètre. But prêter cet ensemble aux OM désirant s'initier aux hyper-fréquences. Alain F5LWX a fait la même démarche avec un ensemble 5,7 GHz. Je cherche donc une parabole prime-focus 50 à 60 cm, faire offre...

Station 10 GHz de Bertrand F5PL/P

Mesure du facteur de bruit à l'analyseur de spectre par Jean-Paul F8IC

D'après document de l'IUT.

Généralités

Le facteur de bruit, paramètre fondamental dans un amplificateur ou préamplificateur, est l'objet de bien des commentaires, de publications et fait l'objet d'une course permanente, utile pour les utilisations spatiales, plus réduite pour les utilisations au sol. Il y va du goût de chacun d'avoir une bonne place au classement de cette course perpétuelle, et pour les OM ayant le goût de faire évoluer leur matériel depuis la nuit des temps, cette course n'est pas près de s'arrêter y compris pour la construction ou essais de divers moyens de mesure ! Dans un précédent article (Hyper de octobre 2013) j'ai repris toutes les publications faites dans le bulletin sur le sujet et avec un peu d'effort personne ne se doit d'ignorer en quoi consiste ce fameux nF! Par contre sa mesure (difficile pour les nF voisins ou inférieurs à 1 dB) est souvent sujet à discussions (par les OM mais aussi par les pros de la mesure!) et les moyens de mesure sont variés.

En effet la mesure de ce nF est sujette à pas mal d'imprécisions et je vais faire dans un jour prochain, dans ce bulletin, un résumé (en toute transparence!) de ce que disent les ténors de la mesure : (Agilent qui a changé de nom d'ailleurs, Rhodes et Schwartz et quelques autres dont des OM très sérieux) qui ne jurent que par les derniers analyseurs de réseaux sortis, plus pas mal de matériel autour, et même du logiciel de traitement statistique, car la nature du bruit étant aléatoire les mesures sont traitées par des méthodes statistiques comme celle connue des statisticiens dite de Monte Carlo.

J'ai trouvé dans mes lectures un document issu de l'UIT / Union Internationale des Télécommunications (Recommandation UIT SM.1838), document qui donne des arguments sur les mesures du nF et se plaint des résultats de mesures souvent disparates que l'on trouve dans diverses publications ou feuilles de données.

Fort de cela l'UIT décrit à la suite trois approches de mesures du nF au moyen d'un analyseur de spectre classique, je dis classique car les modernes (moins de 10 années) moyennant des options parfois chères incluent cette mesure. Je ne fais donc que reprendre en élaguant un peu ce document. N'en attendez pas des merveilles de précision, et tel n'en est pas le but, mais seulement de faire une mesure avec un appareil assez démocratisé qu'est l'analyseur de spectre et que chacun puisse se faire une idée de ce que dit l'IUT.

1) Mesure du nF avec le seul analyseur de spectre, méthode dite « du gain ».

Principe : la formule de calcul du facteur de bruit à 25 $^{\circ}$ C s'écrit : nF = Pout + 174 - gain .

Avec nF = facteur de bruit du système à mesurer, P out = densité de puissance de bruit à la sortie du système à mesurer , gain = gain du système à mesurer en dB.

Configuration de mesure.

- 1) Générateur ---> récepteur ---> analyseur de spectre
- 2) Charge 50 ohms ---> récepteur ----->analyseur de spectre.

Procédure

Etape 1 : Connecter un générateur de signaux à l'entrée du récepteur, syntoniser le récepteur sur la fréquence à recevoir, appliquer une tonalité continue de façon à avoir un rapport signal sur bruit > 30 dB.

Etape 2 : A l'aide de l'analyseur de spectre mesurer le niveau de la puissance d'entrée en dBm = Ne, puis la puissance de sortie du récepteur Ns en dBm, on a gain = Ns-Ne.

Etape 3 : brancher la charge 50 ohms à l'entrée du récepteur, mesurer à l'aide de l'analyseur de spectre la densité de puissance de bruit Pout (dBm par hertz) avec les mêmes réglages que précédemment bien sûr.

Etape 4 appliquer la formule donnée au niveau du « principe ».

2) Méthode dite du coefficient « Y »

Principe

Cette méthode repose sur l'application d'une source de bruit étalonnée à l'entrée du récepteur. En nota personnel j'ajoute qu'une source de bas niveau 5 à 6 dB enr convient mieux pour les nF faibles, une plus haute 15/16 dB enr pour les mesures de nF plus élevés, et qu'une source de 15 dB enr avec un atténuateur fonctionne, mais avec des inconvénients liés à l'atténuateur .

On a : $nF = ENR - 10 \log (10^{Y}/10 - 1)$ formule 2 (Le symbole ^ signifie puissance) où nF = facteur de bruit du récepteur en dB

ENR = rapport excédentaire de bruit de la source en dB (dans la bande où se situe la mesure, bien sûr !)

Y = différence de densité de bruit en dB entre la position source « on » et source « off » c'est-à-dire l'équivalent de « source chaude » et « source froide »

Configuration de la mesure

Il n'y a qu'une seule étape et un seul schéma = source de bruit connectée au récepteur, luimême connecté à l'analyseur de spectre.

Mesure

Etape 1 : Connecter la source de bruit à l'entrée du récepteur, la mettre en position « on » , caler le récepteur sur la bande de mesure .

Etape 2 : avec l'analyseur de spectre mesurer la densité de bruit N « on » en sortie dBm/hertz.

Etape 3 : mettre la source de bruit sur « off » et mesurer la densité de bruit « N off » en sortie dBm/hertz.

Etape 4 : appliquer la formule 2 explicitée plus haut.

3) Méthode de mesure du nF par mesure de la sensibilité

J'avais évoqué cette méthode dans un article où je parlais du « signal minimum discernable » Cette méthode met en œuvre un plus grand nombre d'éléments, mais donne de bons résultats (d'après IUT) pour un récepteur en modulation analogique.

Principe

On peut déterminer le nF d'un récepteur en modulation d'amplitude en appliquant la formule suivante :

 $nF = S + 174 - 10 log (Res) - 10 log (m^2/1 + m^2)$ avec :

nF facteur de bruit du récepteur en dB

S = limite de sensibilité du récepteur en dBm réduite par rapport signal/brouillage y compris la valeur SINAD (bruit et distorsions) de la valeur de sensibilité mesurée (par exemple 12 dB dans le cas modulation d'amplitude).

Res = largeur du filtre de bande de bruit effective utilisé pour la mesure (ou bande de mesure si pas de filtre)

m= indice de modulation amplitude utilisé pour la mesure, en SSB on gagne 6 dB.

<u> </u>	limite de sensibilité	_\
Î Î	SINAD en dB	_1
	bande de résolution du bruit 10 log <u>Res</u>	
<u>, </u>		_\
j.	Facteur de bruit en dB	

Limite absolue de bruit à 25°C - 174dB m/hertz

Bibliographie : docs UIT-R SM.1838 (2007)

La page des millimétriques par Eric F1GHB

De John G8ACE

Sunday saw a new 76 GHz UK distance record made. Information here:

http://www.southgatearc.org/news/november2013/uk radio amateurs extend 76ghz distance record. htm#.UpOkR8TIZzU

http://www.microwaves.dsl.pipex.com/

De Jean-Louis F1HNF/49

Petite info : Je viens de commander (60 €) chez DI2AM un multiplicateur pour le 76 GHz. C'est un tripleur ou quadrupleur modèle CMA 382400 (caractéristiques sur Dubus 04/2008 p 84) qui permet de sortir jusqu' à 100 mW entre 37,.8 et 40,8 GHz. DL2AM me précise qu'il possède un modèle 160 mW (CMA 382400 triés) avec les mêmes caractéristiques pour 70 €, lequel n'est pas au catalogue.

Trouvé sur le web:

Francois LX1DU has experimented with radar anti-collision unit, who can produce high power wide band signals around 76 GHz. Goal was to build a high power source for doubling the frequency for 122 or 134 GHz to obtain more output power.

The Gunn works between 60 and 90 GHz and produced around 15 to 90 Mw, depending on the chosen frequency. Adjusting the frequency, can be done by varying the Gunn Voltage. Very hard to adjust on 76 GHz, every 0,01 V brings a big shift. The signal was also too wide for receiving on a SSB receiver on 76 GHz.

It would be nice to lock this Gunn but different tryouts failed. A new approach was to mix with a circulator. Due the lack of an original unit, a 38 GHz circulator type was modified due trial an error for 76 GHz. Around 20 dB isolation was reached, so not so bad.

On the picture, left the new set up with the Gunn running nearby 76 GHz. The rebuild circulator in the middle. At the right side the 1 mW 76 GHz source (a locked system).

Balise millimétrique par Jean-Louis F1HNF

Sur une idée d'Éric F1GHB (1) qui utilise un détecteur "boîte blanche" associé à un OL "brick" et avec l'aide de Dieter DF9NP qui propose des PLL (2), j'ai réalisé une mini balise locale millimétrique 24, 47, 76 et 122 GHz.

Le détecteur "boîte blanche" est équipé d'une diode HSCH 9161 dont le "Burnout power" est de 20 dBm soit 100 mW.

Avec son montage, Éric a obtenu des harmoniques jusqu' à 122 GHz en appliquant environ 10 dBm soit 10 mW sur le détecteur. Pour ma part je l'ai simplement ouvert (juste 4 vis à démonter).

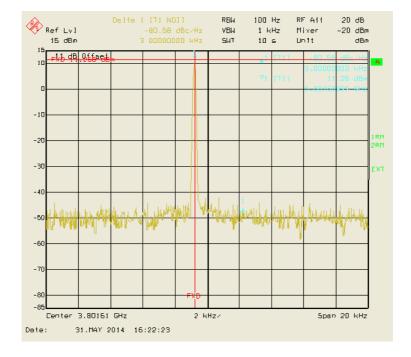
Le PLL de Dieter (4 GHz) peut délivrer jusqu'à 4 fréquences assez proches et une P. Out de 12/13 dBm.

J'ai synchronisé ce PLL avec un OCXO 10 MHz Oscilloquartz (suite aux bonnes critiques de J-François F1LVO: consommation, précision, etc.) trouvé sur EBay (3).

Pour un bon fonctionnement du PLL il faut un signal 10 MHz compris entre 1 et 3 V c à c (l'Oscilloquartz donne 2 V).

Après un échange de mails avec Dieter, DF9NP nous sommes arrivés aux fréquences suivantes:

- 4008,0083 MHz X par 6 pour avoir du 24048,050 MHz
- 3924,0088 MHz X par 12 pour avoir du 47088,106 MHz
- 3801,6092 MHz X par 20 pour avoir du 76032,184 MHz
- 3820,320 MHz X par 32 pour avoir du 122250,240 MHz


Ce tout petit module 45 x 55 mm consomme 0,10 A sous 8/12 V.

Le bruit est de l'ordre de 80 dBc/Hz, je pense que c'est suffisant pour une balise locale.

La précision est très largement supérieure à mes besoins (celle de l'OCXO 10 MHz : 4 x 10⁻⁹ en température par exemple).

Je viens de tester le module en 24 et 47 GHz ; au bout de 15 mn, c'est d'une stabilité redoutable et très ORO localement.

Pour quelques dizaines d'Euros, je possède maintenant une mini balise très stable pour mes transverters (présents et futurs).

Avec l'aimable autorisation de Dieter, OM très coopératif et très rapide pour la mise au point que je remercie particulièrement.

- (1) Hyper n° 142 p 10 Article sur un transverter 122 GHz
- (2) http://df9np.de/
- (3) http://www.datasheetarchive.com/2--oscilloquartz+ocxo-datasheet.html

De Christophe F5IWN: mon projet de TVT 76 GHz

Tout en menant à bien mes expérimentations 47 GHz, j'ai pu acquérir sur Ebay un multiplicateur x 4, 19 GHz ... Quelque chose pouvant être utile pour attaquer directement un mixer x 4 76 GHz ou encore un doubleur 38 GHz suivi d'un mixer x 2 76 GHz ... Donc pourquoi ne pas songer à continuer en millimétrique avec la bande 76 GHz, après tout, cela ne doit pas être fondamentalement différent !

Concernant les choix techniques j'en suis arrivé à l'état suivant :

Oscillateur local et choix de la FI:

Après mes expériences sur le 47 GHz, il est clair que je dois partir sur quelque chose de verrouillé sur une référence précise 10 MHz.

Je ne suis pas encore bien décidé sur le choix de la FI mais pour attaquer le multi x 4 mentionné plus haut il me faut un OL qui sorte:

- du 4743 MHz pour une FI de 144 MHz
- du 4725 MHz pour une FI de 432 MHz
- du 4671 MHz pour une FI de 1296 MHz

Je voudrais aussi ne pas perdre trop de temps sur les multiplications diverses pour pouvoir me concentrer sur la partie réellement millimétrique du projet ; j'ai donc pensé aux solutions PLL de Dieter DF9NP.

Pour plus d'informations sur ces solutions voir : http://df9np.de/

J'en vois au fond de la classe qui vont dire que ce n'est peut-être pas une solution fournissant un signal propre ... eh bien cela fait partie de l'expérimentation et de toute façon mon objectif initial est d'effectuer quelques essais locaux avec les copains s'intéressant aussi au sujet .

Le montage de Dieter permet la programmation de quatre fréquences, ce qui me permet de gérer ma "non décision" sur le choix de la FI!

Il me reste même une quatrième fréquence de libre... pourquoi ne pas prévoir une fréquence "balise" (4752 MHz) ... L'ensemble pourrait ainsi être réutilisé comme signal de test si la qualité de cet OL s'avère insuffisante pour du trafic BLU.

J'ai donc discuté avec Dieter pour vérifier que les quatre fréquences suivantes pouvait être programmées sur sa carte :

• 4743, 4725, 4671, 4752 MHz

La réponse ayant été positive, j'ai commandé cet OL, en fait ce modèle : http://df9np.de/page1.html

J'ai déjà fait des tests sur table très concluants avec ce circuit.

Choix du mixer:

DB6NT fournit deux types de mixer sub-harmonique pour le 76 GHz :

- un mixer x 2 à attaquer avec un OL à 38 GHz: PCB 45 sur http://www.kuhne-electronic.de
- un mixer x 4 à attaquer avec un OL à 19 GHz: PCB 27 sur http://www.kuhne-electronic.de

La solution idéale est évidemment le PCB 45 et l'OL à 38 GHz mais pour faire simple et rapide je vais partir sur le PCB 27 et l'OL à 19 GHz puisque la chaîne DF9NP + multi x 4 me fournit directement ce signal.

Rien ne m'empêche pas la suite de partir sur l'autre piste si je trouve une solution assez simple pour le doubleur 19 GHz/38 GHz (d'ailleurs cela existe chez DB6NT).

Le synoptique :

Voici le synoptique qui résulte du raisonnement déroulé plus haut. (Synoptique donné pour une FI à 144 MHz)

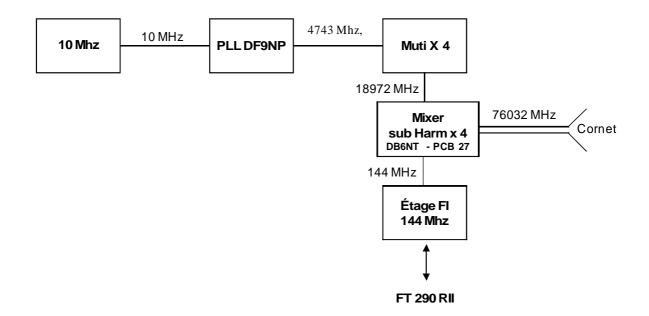


Figure 1 Le synoptique

A suivre avec des photos lorsque le projet aura avancé.

Donc à bientôt sur 76 GHz! Christophe - F5IWN

Circulateur sur chaîne d'oscillateur pour transverters 76 GHz F1CLQ/F1HNF

En cherchant du WR 28 sur EBay, je suis tombé sur des isolateurs pour le 38 GHz. J'ai posé cette question à Michel F1CLQ pour avoir son avis.

"Pour mon transverter 76 GHz, est-il intéressant / important de mettre en sortie du tripleur CMA38400 (de DL2AM) un circulateur en WR 28 (j'ai du 37,368 GHz car la FI est à 1296 MHz)?"

Voici sa réponse :

"Je pense que présenter un RL (S11) correct (15 à 20 dB) est très favorable à la stabilité du système, j'ai mesuré le RL à 38 GHz à l'aide d'un coupleur en guide, cette adaptation est assez critique et joue énormément sur la puissance de sortie du multiplicateur 76 GHz, l'énergie qui ne va pas dans le multiplicateur va dans la charge poubelle.

En ce qui me concerne, j'ai mis un circulateur à cet endroit, la perte d'insertion est de 0,3/0,4 dB ce qui est acceptable.

Lors de la mise au point, je visualise puissance d'excitation, S11 à 38 GHz, et puissance de sortie à 76 GHz, la visualisation sur galvanomètre est préférable pour faire les maxi et mini!

Je sais, c'est un peu lourd, mais utile, il faut faire cela le matin par grand calme et surtout ne pas s'énerver et remettre au lendemain si l'on sent que l'on dérape!

Le produit est en vente chez Art-in-part sur EBay n° 130500207655 à 15 dollars - frais de port gratuits.

J'ai retrouvé une caractéristique voisine : Argus - Modèle 1IW28-38,5-1 insertion loss 0.3 dB, isolation 19 dB, VSWR 1.30, Avg power 0.5 or 2 W.

Dans un autre mail il me précise :

"Le petit banc de test que je me suis constitué permet la visualisation de ces trois paramètres, le problème c'est de trouver à un prix raisonnable les capteurs de mesure, (détecteurs ou thermocouple et coupleurs), une solution pour la mesure du S11 à 38 GHz c'est de mesurer sur le port retour (poubelle) du circulateur l'énergie présente, à condition que le détecteur utilisé pour faire cette mesure soit bien adapté (S11 supérieur à 20 dB).

La calibration se fait en présentant un court-circuit sur port de sortie (avec par exemple une petite plaque en alu), vous mesurez alors sur le port poubelle la totalité de l'énergie réfléchie aux pertes près, ce qui vous donne le point de référence maxi sur votre galva et si vous présentez une charge en guide de qualité sur la voie utilisation vous pourrez lire le point mini, à condition que le circulateur soit dans la bande de fréquence utilisée.

D'une façon générale, on trouve assez facilement sur EBAY US, UK, et Israël des éléments de mesures en WR28, ils sont moins chers que le WR22 ou WR15, recherchés par les radioamateurs. ''

Nota: Le banc de test décrit ci-dessus, est la très belle réalisation de F1CLQ exposée lors concours de réalisations CJ 2014.

Note: Les anciennes rubriques sont disponibles ici:

http://millimeterwave.free.fr/Rubrique_F.htm Eric F1GHB mailto:F1GHB@cegetel.net

Enregistrement de variables sur longue durée par André F9HX

Comment enregistrer facilement une donnée évoluant lentement ? En utilisant un enregistreur-clé USB.

Il est souvent utile, et quelquefois nécessaire, d'enregistrer des données évoluant lentement afin de pouvoir les étudier à loisir après leur manifestation. Cela est vrai, non seulement dans un laboratoire, mais pour bien d'applications domestiques et l'émission d'amateur.

Des données enregistrables

La tension électrique, le courant électrique, la puissance électrique, la résistance électrique, la température, le taux d'humidité, la pression acoustique, les vibrations, etc., sont des données dont les variations doivent être connues lorsque les conditions d'utilisation d'un dispositif évoluent

Il existe des enregistreurs sur bande ou disque de papier et modèles électroniques. Le prix de ces derniers est généralement assez élevé et dissuasif pour l'amateur moyen.

Par contre, les enregistreur-clé USB apportent une solution simple, efficace et de coût réduit. Il s'agit de petits appareils à utiliser avec un PC sur WindowsTM en les connectant sur un port USB pour initialiser et après enregistrement, lire.

Enregistreur-clé USB

Des distributeurs français (1,2,3) disposent d'enregistreurs-clé USB pour :

- . tensions électriques 0 à 30 VDC en direct, > avec atténuateur extérieur
- . courants électriques 4 à 20 mA en direct > avec shunt extérieur
- . températures -10 + 50 °C capteur interne
- . températures avec couple thermoélectrique extérieur K -200 + 1350 °C
- . température et humidité 35 + 80 °C 0 à 100 RH
- . vibrations 3 axes \pm 18 g
- . pression sonore 30 à 130 dB
- $-CO^2$

et même des micros espions!

L'enregistrement comporte les dates de début et de fin ainsi que les temps écoulés.

Mode d'emploi

Charger le logiciel fourni avec l'appareil. Introduire l'enregistreur dans un port USB. Suivre les indications pour entrer les données requises, type d'enregistreur, nom, choix des unités (par exemple °C ou K), cadence d'enregistrement (de 1 s à 12 heures), alarmes hautes et basses, date de départ et instant de départ. Alors, on retire l'enregistreur qui est prêt à être soumis aux données. On peut arrêter l'enregistrement en le replaçant dans le port USB et alors lire cet enregistrement. Celui-ci peut être copié pour le conserver dans le PC et sera effacé dans la mémoire de l'enregistreur lorsqu'on fera un nouvel enregistrement.

Enregistrement de températures

J'ai choisi un modèle à thermocouple extérieur pour son universalité (figure 1) :

Data-Logger USB EL – USB – 2 (1)

Malheureusement, comme le montre cette figure, il est livré avec une sonde de grande dimension qui ne permet pas des enregistrements sur de petits objets. Il m'a fallu acquérir une sonde K (figure 3) munie d'un capteur très petit pour effectuer des relevés sur des objets relevant de l'électronique (figure 2).

Des enregistrements sur un appareil domestique ont tout d'abord été effectués pour bien maîtriser la pratique de l'appareil.

La figure 4 montre l'évolution de la température interne d'un réfrigérateur. L'ouverture de la porte durant 30 secondes provoque une augmentation instantanée de la température de l'air. Fort heureusement, l'inertie thermique des aliments leur assure une très bonne constance. On peut la mettre en évidence en piquant la sonde dans un fromage ou une motte de beurre! Pour une application concernant vraiment l'émission d'amateur, la petite sonde K a été placée contre le boîtier du transistor final du SSPA 10 GHz 15 W décrit par F6BVA. Elle est immobilisée par de la colle à l'argent (figure 5). La figure 6 montre l'évolution de la température durant une séquence TX (pleine puissance) / RX, les ventilateurs n'étant en action que durant l'émission.

Utilisation non prévues d'un Data-Logger USB EL – USB – 2

En utilisant un enregistreur prévu pour une tension électrique, Il suffit de disposer d'un capteur délivrant une tension adéquate pour pouvoir enregistrer tout paramètre variable. On peut aussi enregistrer des courants à l'aide d'un shunt de valeur appropriée.

On peut envisager d'utiliser un modèle non prévu pour la mesure de tensions. En effet, le module destiné à l'enregistrement des températures utilisé jusque là, doit recevoir une tension située dans la plage délivrée par un thermocouple K (figure 7), soit :

$$-200 \,^{\circ}\text{C} - 6 \,\text{mV} + 1350 \,^{\circ}\text{C} + 54 \,\text{mV}$$

Cela convient pour un shunt classique 50 mV. Pour mesurer des tensions plus élevées, il faut intercaler un atténuateur réduisant le signal à moins de 50 mV. Par exemple, pour une tension de l'ordre de 10 volts, on insérera un diviseur rudimentaire $1000~\Omega/2, 2~\Omega$. La résistance d'entrée du voltmètre ainsi constitué est assez basse, mais acceptable pour beaucoup d'applications.

La figure 8 montre la tension aux bornes d'un accumulateur composé de 7 éléments NI-MH de 1 Ah durant sa décharge par une résistance de 50 ohms. Elle a été arrêtée avant que la tension ne chute rapidement.

On peut aussi connaître la variation du QRK d'une station pendant une période de temps. La tension du S-mètre est appliquée à un diviseur délivrant une tension adéquate. La figure 9 montre la variation constatée lors de la réception de la station américaine WWV sur 10 MHz. L'aiguille du S-mètre du récepteur frétillait sous l'action d'un QSB rapide et profond et une légère tendance à l'augmentation du QRK moyen apparaît vers la fin de l'enregistrement.

Conclusion

L'emploi de tels enregistreurs est très aisé et ils peuvent être très utiles. Il est un peu hasardeux d'utiliser un appareil prévu pour les températures à un autre usage ; le prix est accessible (≈ 80 \in) et devrait permettre d'acquérir les modèlesappropriés aux divers besoins.

Références

- (1) www.lascarelectronics.com Selectronic
- (2) Voltcraft Conrad
- (4) http://www.pce-france.fr/ > instruments de mesure > mesureurs

Figure 1. Enregistreur pour températures

Figure 2. Sonde longue

Figure 3. Sonde miniature

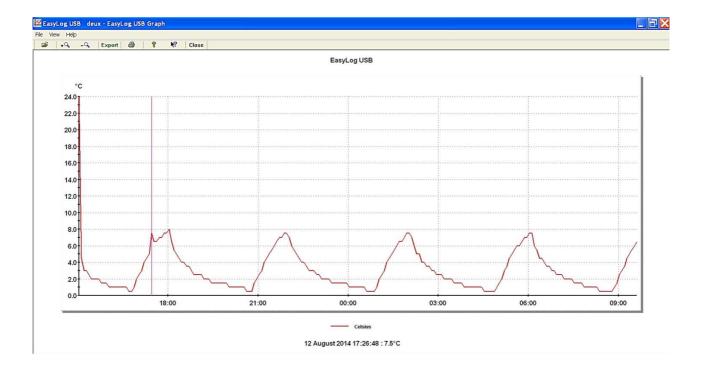


Figure 4. Température de l'air dans un réfrigérateur ; la porte a été ouverte 30 secondes à l'instant marqué par le trait rouge vertical

Figure 5. Enregistrement de la température du boîtier du transistor final

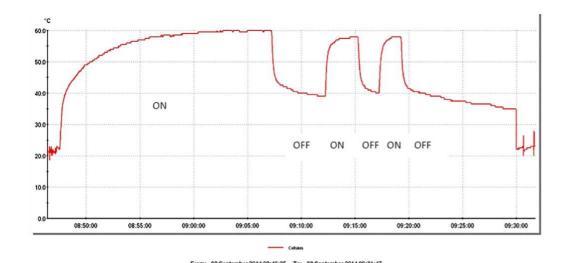


Figure 6. Evolution de la température du boîtier de transistor

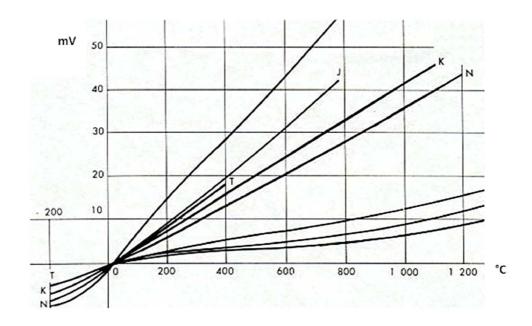


Figure 7. Tension délivrée par un thermocouple K en fonction de la température

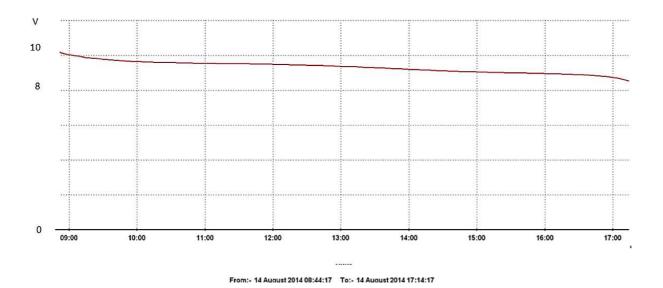
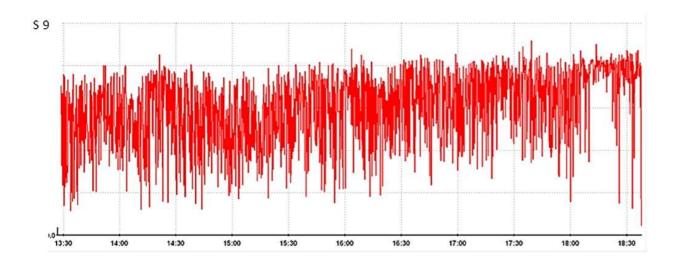



Figure 8. Décharge d'un accumulateur

From: - 22 August 2014 13:26:58 To: - 22 August 2014 18:38:08

Figure 9. Réception de la station américaine WWV sur 10 MHz

Années des premiers QSO réalisés par André F9HX:

30 MHz 1945 F8BAJ (couvert par la prescription!) 7 et 14 MHz 1946 F7DD (condamné en 1947!) 56/58/60 MHz 10.07.1947 F9HX 72 MHz 14.01.1949 F9HX 144 MHz 20.05.1950 F9HX 435 (420) MHz 13.01.1952 F9HX 1296 MHz 20.01.1996 F9HX 10 GHz 31.08.1996 F9HX 23 (24) GHz 2004 F9HX

Félicitations à André! Et les vôtres...

Les balises Hyper par Michel F6HTJ

Indicatif	Fréqu.	Dep.	Altit.	Antenne	P.Em	Angle	Site	Remarques
F5ZBS	1296.744	67	1070 m	Trèfle	4 W	omni	JN38PJ	F6BUF
F1ZBI	1296.812	68	1278 m	Double quad	0.8 W	180°	JN37NX	F5AHO
F1ZTF	1296.816	16	125 m	Trèfle	10 W	omni	IN95VO	F1MMR - F1IE
F5ZRS	1296.825	38	1700 m	Dièdre	0,1 W	315°	JN25UD	F5LGJ
F5ZBM F1ZBK	1296.847 1296,854	77 54	160 m 420 m	Alford slot Guide à fentes	10 W 5 W	omni omni	JN18JS JN38BP	F6ACA F1DND – F1DPR
F1ZAK	1296.860	13	114 m	Guide à fentes	15 W	omni	JN23MM	F1AAM
НВ9ЕМЕ	1296.866		1422 m	Guide à fentes	12 W	omni	JN37KB	HB9CUA - HB9HLM
F1ZMT	1296.872	72	85 m	Panneau/trèf.	10 W	omni	JN07CX	F1BJD
FX3UHX	1296.875	29	121 m	Quad	2 W	90°	IN78UK	F6CGJ
F1ZBC F5ZAN	1296.882 1296.896	86 66	230 m 1100 m	Alford slot Guide à fentes	10 W 7 W	omni omni	JN06JG JN12LL	F1AFJ F1EQF- F6HTJ (6h30-0h30)
TK5ZMV	1296.915	2A	635 m	yagi	5 W	315°	JN41JS	F1AAM- F5BUU-TK5EP
F5ZBT	1296.933	33	93 m	J8-	20 W		IN94QT	F6DBP
F5ZCS	1296.956	56	185 m	Fentes	2,3 W	omni	IN87PT	F8ACF
F5ZHH	1296.959	59	60 m	-	0 = ***		JN10UH	F5HMS (projet)
F5ZWX	~1296,990	83	780 m	Fentes	0,5 W	omni	JN23XE	F5PVX
F1ZQU F5ZAC	2320.816 2320.834	16 66	125 m 2400 m	Fentes Panneau	25W 5 W	omni NNE	IN95VO JN12LL	F1MMR-F1IE F1VBW – F8APF - F6HTJ
F1ZYY	2320.834	40	100 m	Panneau	4 W	NNE	IN93PS	F1VDW - F0AFF - F0H1J
F1ZUM	2320.855	45	170 m	Fentes	2 W	omni	JN07WV	F1JGP
F1ZRI	2320.872	72	260	Loop 14 él	8 W	190°	IN98WE	F1BJD
F5ZMF	2320.886	86	230 m	Fentes	5 W	omni	JN06JG	F5BJL
F6DWG/b F5EJZ/b	2320.905 2320.929	60 29	140 m 40 m	Fentes 2 x double quad	2 W 6 W	omni E/NE	JN19FK IN78RO	F6DWG F5EJZ – F5ELY
F5ZEN	2320.929	33	83 m	Corn.Pan.parab	5 W	20° 75° 30°	IN94QT	F6CBC - F5FLN
F5ZHX	2320.983	83	780 m	Corn.r an.paras	5 11	20 73 30	JN23XE	F5PVX (projet)
F1ZAO	5760.060	22	326 m	Guide à fentes	1 W	omni	IN88HL	F1GHB-F1LHC
F5ZBE	5760.820	77	160 m	Guide à fentes	12 W	omni	JN18JS	F5HRY-F6ACA – F1EBN
F1ZBD	5760.845	45	170 m	Guide à fentes	2 W	omni	JN07WV	F1JGP-F5UEC
F5ZUO F5ZWY	5760.862 5760,883	66 83	1100 m 780 m	Guide à fentes Guide à fentes	1 W 1 W	omni omni	JN12LL JN23XE	F6BVA – F6HTJ (6h à 23h) F6BVA-F5PVX
HB9G	5760.900	63	1677 m	Guide à fentes	3 W	omni	JN36BK	F5JWF
F6DWG/b	5760,904	60	140 m	Guide à fentes	8W	omni	JN19FK	F6DWG
F1ZWJ	5760,930	81	625 m	Guide à fentes	2 W	omni	JN14EB	F6CXO - F1BOH
F5ZPR	5760.933	33	83 m	Cornet 8dB	8 W	130°	IN94QT	F6CBC - F5FLN
F5ZYK F5ZBB	5760.949 10368.079	49 77	48 m 160 m	Guide à fentes Guide à fentes	3 W 3 W	omni omni	IN97RL JN18JS	F6APE – F8BCA F5HRY-F6ACA – F1EBN
F1ZAP	10368.108	22	326 m	Guide à fentes	0.5 W	omni	IN88HL	F1GHB
F5ZPS	10368.300	33	83 m	Cornet sectoriel	8 W	25°	IN94QT	F6CBC – F5AUW - F5FLN
F5ZEP	10368.333	33	83 m	Cornet sectoriel	5 W	130°	IN94QT	F6CBC – F5AUW - F5FLN
F5ZFS	10368.820	43	1000 m	Guide à fentes	1 W	omni	JN14SX	F6BVA- F6DRO-F6FDR
F1ZAU F1ZDR	10368.825 10368.838	21 38	2100m	Guide à fentes Guide à fentes	1.3 W 1 W	omni omni	JN27IH JN24WX	F1MPE F6BVA–F6DRO–F1LCE(projet)
F5ZTR	10368.842	60	140 m	Guide à fentes	10 W	omni	JN19FK	F6DWG
F1ZCL	10368.855	06	1200 m	Guide à fentes	0.1 W	omni	JN33KQ	F1BDB
F5ZAE	10368.860	66	1100 m	Guide à fentes	1 W	omni	JN12LL	F2SF – F6BVA - F6HTJ
F1ZAI F5ZFD	10368.856 10368.870	45	170 m	Guide à fentes	1 W	omni	JN07WV	F1JGP
HB9G	10368.870	88	370 1677 m	Guide à fentes Guide à fentes	2 W 3 W	omni omni	JN28TC JN36BK	F5IQA – F5AYE F5AYE
F5ZBA	10368.905	23	700 m	Guide à fentes	2,5 W	omni	JN06WD	F1NYN-F6DPH
F5ZWM	10368.919	19	578 m	Guide à fentes	2 W	omni	JN05VE	F6DRO-F6ETI
F1URI/b	10368.928	73	1660 m	Parabole 1.2m	0.7 W	Mt Blanc	JN35FU	F1URI (en mém. F6BSJ)
F5EJZ/b F5ZGV	10368.929 10368.937	29	40 m	Cuido à fontes	0.3 W	NNE	IN78RO	F5EJZ – F6KPL
F5ZGV F5ZTT	10368.937	37 81	91 m 625 m	Guide à fentes Guide à fentes	4 W 1 W	omni omni	JN07IK JN14EB	F5AYE F6CXO – F1BOH
F1ZXJ	10368,957	57	300 m	Guide à fentes	0,2 W	omni	JN39KD	F1ULQ - DH1VY
F5ZWZ	10368.983	83	780 m	Guide à fentes	1 W	omni	JN23XE	(6h à 23h) F6BVA – F5PVX
F5ZAB	10368.994	71		Guide à fentes	0.2 W	omni	JN26KT	F6FAT
F5ZTS F5ZEC	24048.170	60	140 m	Parabole Cornet gostoriel	0.5 W	NNE(29°)	JN19FK	F6DWG
F5ZEG F1ZAQ	24048.233 24048.252	33	83 m 326 m	Cornet sectoriel Guide à fentes	0.5 W 0.08 W	130° omni	IN94QT IN88HL	F6CBC – F5AUW – F5FLN F1GHB-F1LHC
F5ZYA	24048.300	81	625 m	Guide à fentes	0.05 W	omni	JN14EB	F6CXO
F6DKW/b	24048.392	78	230 m	Guide à fentes	0.5 W	omni	JN18CS	F6DKW
F1ZPE	24048.550	45	170 m	Guide à fentes	0.35 W	360+53°	JN07WV	F6DPH-F1JGP
F1ZSE	24048.738	09	1200 m	Guide à fentes	0.1 W	omni	JN02TW	F4BXL – F1AAM
HB9G F5ZGO	24048.900 24048.900	83	1677 m 780 m	Guide à fentes Guide à fentes	1 W 0.9 W	omni omni	JN36BK JN23XE	F5JWF – F6DPH F1DFY – F5PVX
FSEGU	₽ ±0.200	03	/ 00 III	Guidt a letties	U.7 YY	Jiiii	J1143AL	FIDEI - FSEVA

JA 1,2 et 2,3 GHz des 30 et 31 août 2014 par Gilles F5JGY

Je ne sais pas si vous avez remarqué, mais tout le monde se plaint que cet été a été mauvais, sans soleil, pluvieux, que sais-je encore... Eh bien, c'est la troisième JA accompagnée d'un temps quasi-magnifique. Il fallait le souligner. Si on voulait finasser, on pourrait ajouter, selon les régions, que le dimanche a été plus beau que le samedi, et que les stations qui ont choisi l'option « altitude » ont eu en prime l'option « brouillard et froid ». Bon. Quoi qu'il en soit, cela semble vous avoir inspirés : la participation ce mois-ci est plus que remarquable, les logs garnis et les distances réalisées plus qu'honorables.

1296 MHz	km	Q S	D X	F 1 A	F 1 B	F 1 B	F 1	F 1	F 1	F 1 F	F 1	F 1	F 1	F 1	F 1 N	F 1 R	F 1 R	F 1 U	F 4 F	F 5 A	F 5 D	F 5 E	F 5	F 6 A	F 6 A	F 6 B	F 6 B	F 6 C	F 6 C	F 6 C	F 6	F 6	F 6 E	F 6 F	F 6 H	F 8	H B 9	H B	H B
14/08		O		Z J	Б J D	Z	M L		P X	D	N F	E	S M	K C		l	Q	_	S D	Y	Q K	L L /	J E	P	N W	A	V A	B C	I S	X O	K W	Q Z	T Z	A	T	L S	A M	Ď	H L
				P	P			P		P	P			P	P				P	P		P				P	P							P					
F1AZJ/P	4856	9	601		X			X								X				X	X								X			X		X		X			
F1BJD/P	7890	13	721	X			X			X	X	X		X	X		X			X				X		X	X					X							
F1BZG	4243	9	593								X				X	X				X	X			X			X					X				X			
F1HNF/P	2132	5	251		X	X										X					X										X								
F1MKC/P	3200	6	339		X										X	X							X								X		X						
F1NYN/P	4798	11	282		X	X			X					X		X					X		X		X						X		X	X					
F5AYE/P	13294	18	545	X	X	X		X								X		X	X		X						X	X	X		X	X		X		X	X	X	X
F5FMW	2328	6	349																			X					X	X	X	X					X				
F5JJE	3462	9	489						X			X		X	X									X		X			X			X	X						
F6APE	1646	5	189		X	X	X					X											X																
F6FAX/P	2262	5	418	X			X								X					X												X							
F8DLS	2216	7	426	X		X		X					X							X	X											X							
QSO	102																																						

Le pompon des points sur 1296 MHz est pour Jean-Paul F5AYE/P 74, débutant (en /P) sur cette fréquence, qui dépasse 13000 points-km (rare!) avec 18 QSO. Il a utilisé pour cela, non plus l'antenne 23 éléments habituelle, mais une boucle disposée devant la source bibande de sa parabole 5,7/10 GHz. Apparemment, c'est très efficace et ca gagne du temps au montage. Bravo!

Le pompon des distances est pour Jean-Luc F1BJD/P, qui passe les 700 km avec Magic BVA, IN98WE-JN33HR, ça représente une belle diagonale... Sur les deux bandes! Bravo Jean-Luc, avec près de 8000 pts-km, un beau trafic.

2320	km	óso	DX	3CJ	D/P	ZG	E/P	FDD/P	F/P	FIE	N.P	FIUSF	LP	C/P	WN	D/P	ΑM	QK	L/P	F6APE	A/P	ВС	F6CIS	XO	F6ETZ	X/P	F6HTJ	STO	ON4IY
MHz	_			EA2BCJ	F1BJD/P	F1BZG	1CNE/P	1FD	1HNF/P	Н	1NYN/P	FIL	F4BXL/P	F4CKC/P	F4C	F4FSD/P	F5FMW	F5DQK	F5ELL/P	F6A	F6BVA/P	F6CBC	F6	F6CXO	F6E	6FAX/P	F6F	F8DL	ŇO
				I	Щ		F	F	Г		豆		F.	Ľ		H	_		F		F(F			
14-août																													
F1BJD/P	4224	6	721					X	X		X		X							X	X								
F1BZG	3066	7	552						X		X		X	X				X		X								X	
F1HNF/P	5104	9	657		X	X					X		X	X			X	X		X	X								
F1NYN/P	4138	8	380		X	X			X				X	X				X							X	X			
F4BXL/P	8858	12	603		X	X			X	X	X	X			X				X	X	X	X	X						
F4CKC/P	3934	10	513			X			X		X					X		X		X		X				X		X	X
F5FMW	4758	9	438	X					X										X	X	X	X	X	X			X		
F6APE	5940	10	693		X	X			X	X			X	X			X	X			X					X			
F6FAX/P	1394	5	251								X			X		X		X		X									
F8DLS/02	1128	5	196			X	X							X		X		X											
QSO		81																											

Justement, saluons la sortie de Michel F6BVA/P 06 en JN33HR, qui a boosté le trafic, en permettant des contacts à 600 km et plus, sur 2320 MHz avec F1BJD/P, F1HNF/P et F6APE, entre autres, sans que la propagation puisse être qualifiée d'exceptionnelle ; ce sont donc le dégagement et la qualité des opérateurs qui ont tout fait!

Autre sortie, celle de Fred F4BXL/P 09, en compagnie de Jean-Claude F5BUU, au Prat d'Albis JN02SV : ils avaient annoncé du 10 GHz, en plus il y a eu du 2320 MHz. Conditions : parabole 90 cm, station CJ2013 150 W bridée à cause des batteries et du convertisseur DC-DC utilisé. Fred explique : « 1ère fois pour moi dans une JA avec du 2,3 GHz, WX froid, 14°C, et brouillard toute la journée (du dimanche) à 1400 m dans le 09 ». Pour une première, 12 QSO, et 8858 pts/km dans le log, le pompon des points sur 2,3 GHz et un coup de maître! Michel F6BVA est content, il a contacté au moins une station « CJ2013 »... Cela fait plaisir.

Infos en vrac : de **Jean-Noël F6APE/49** « en 2,3 GHz, une belle surprise avec le QSO Magic BVA dans le 06 (fait aussi sur 5,7/10 GHz) » ; de **Jean-Yves F1NYN/P 23** « malgré un problème de rotor qu'il a fallu remplacer, tout s'est bien passé…beau temps, du monde, une bonne propagation, et cerise sur le gâteau, barbecue tous les jours. Heureux d'avoir pu contacter Fred F4BXL/P 09 avec un PA CJ, le signal était très fort à près de 400 km » ; de **Jean-Louis F1HNF/P 49** « que du bonheur pour cette JA, pas mal de participants et WX agréable (...) en 13 cm, deux nouveaux départements et locators grâce à F6BVA/P 06 et F5FMW/81, aussi deux beaux QSO à plus de 500 km » ; de **Didier F1MKC/P 87**, avec cette fois le moral au beau fixe, comme le temps « on en redemande ! Un peu d'activité aidée par un peu de propagation génère enfin une belle JA » ; de **Marc F8DLS** présent sur les deux bandes, « petite performance en 2,3 GHz pour cause de panne mais ça remarche ! » ; de **Arthur F5FMW/81**, « seulement 2h30 d'activité dimanche matin, quelques bons QSO sur 2,3 GHz, on sent que les puissances moyennes ont augmenté chez beaucoup d'OM ».

Laissons la conclusion à **Jean-Paul F5AYE** : « au final très bonne JA, les 3 bandes ne m'ont laissé aucun répit... ».

Merci à tous pour les comptes-rendus, pour la participation, pour vos efforts et à bientôt.

73 de Gilles, F5JGY.

JA 5,7 GHz et + des 30 et 31 août 2014 par Jean-Paul F5AYE

De Jean-Louis F1HNF

Belle JA avec 4 QSO à plus de 500 km, merci messieurs.

Comme d'habitude, avec Jean-Noël F6APE, nous réalisons nos QSO hyper avec des fortunes diverses par réflexions sur une colline dans les environs d'Angers. Ce qui est étrange, c'est que l'angle de tir est différent entre le 6 et le 3 cm ?

De Didier F1MKC

JA depuis Painpot commune de Peyrat le Château JN05VS altitude 750 m dpt 87.

Un peu d'activité aidée par un peu de propagation génère enfin une belle JA.

Seul regret toujours aussi peu de candidats pour le 6 cm

DX 6 cm F6APE à 255 km

DX 3 cm F1RJ à 339 km

QSO très difficile avec F5BUU/P, F4BXL/P et F6DRO sur 3 cm.

Une nouvelle station pour moi F6DZK (dpt 78 très actif)

Toujours des essais aussi sympa avec mon voisin F1NYN/P 23 et le seul que j'ai contacté sur les 3 bandes disponibles.

Essais négatifs sur 3 cm avec F4CWN et F5LWX/P.

De Jean-Yves F1NYN

Pour cette JA d'août il faisait super beau dans le 23 mais cela n'a pas empêché Murphy de sévir! En voulant tourner les antennes pour descendre le pylône, rien ne bouge, rotor site HS, et après son remplacement par un G1000 prêté et installé le samedi soir par le voisin du 36 Eric F8ALX, bracon de la parabole supportant le transverter 10 GHz tordu suite à une rotation de 450° du nouveau moteur! Redressage nocturne à la clé à molette, nous sommes loin des mesures GND/Cold sky, le cornet louchait -et louche toujours- mais le dimanche matin cela m'a permis de valider 12 contacts dont F9OE/P dans le 29. J'entendais également la balise d'Alain F5LWX/29 avec son watt, mais ça n'a pas été réciproque. Nous nous sommes rattrapés sur 5,7 GHz.

Beau week-end, bonne propagation, du monde, ça faisait bien longtemps que l'on attendait ça, on en redemande !

D'Alain F5LWX

Dès le samedi midi, la balise de Plougonver arrivait 599 grâce à une réflexion sur un groupe d'éoliennes mais nous n'aurions jamais soupçonné une telle propagation pendant ces deux jours. Le QSO avec Jean-Paul F5AYE/P (74) était très confortable cette fois-ci et sur deux bandes ! Les signaux de F5PL/P (09) étaient 59. Comme nous sommes de doux rêveurs, nous avons fait une tentative avec Michel, F6BVA/P(06) mais nil ! Il faut bien en garder pour la prochaine fois !

Il nous a fallu attendre le dimanche pour battre la moyenne par QSO (457 km/QSO sur 6 cm et 536 km/QSO sur 3 cm!).

Les QSO se sont faits entre 9h et midi, le dimanche... Le désert de l'après-midi nous a incité à changer de colline pour trafiquer via l'Angleterre mais notre nouvel emplacement ne convient pas pour les stations de l'est de la GB.

 $6~\rm cm$: $30~\rm W$ et $90~\rm cm$ offset/3 cm: $1~\rm W$ et $90~\rm cm$ offset. Ma réception $10~\rm GHz$ est à améliorer nettement par rapport à celle de Claude, F9OE/P.

De Claude F9OE

Si le samedi ressemblait à un vilain 11 novembre, le dimanche ce fut l'été...

19 QSO sur 3 cm. Des conditions N-S pas mauvaises et 9 watts dans une Prime focus de 115 cm à la place de l'habituelle 70 cm y sont pour quelque chose...

La palme du gros signal revient sans conteste à F5PL/09, 59 tant sur 2 m que sur 3 cm! Des contacts inhabituels avec F6DRO/31 et F1NYN/P 23 pour ne citer que ces deux stations convoitées depuis longtemps...

Le meilleur DX étant F5AYE/P à 831 km.

Emporté par notre élan, nous avons sollicité F6BVA/P 06 ... mais on ne "fait" pas 1000 km tous les jours et Michel a bien réfréné nos ardeurs en nous invitant à tracer une ligne 29-06 sur la carte... L'érosion du Massif Central n'étant pas pour demain, il faudra attendre d'excellentes conditions "tropo" voire un grand coup de RS!

Le sommet du menez Hom malgré ses 330 m étant difficile d'accès pour un F9 sans sherpas, le premier parking permet d'avoir la voiture près de la station et d'être fort bien dégagé du sud de Paris à l'Espagne.

Pour contacter l'Angleterre, il faut se placer sur un parking un peu plus bas mais très bien dégagé de l'Irlande jusqu'au 35°. La côte ouest de l'Angleterre est hélas bloquée.

Ces quelques infos ne sont données que pour faciliter la tâche de ceux qui voudraient opérer depuis ce sommet (?) breton et éviter des recherches comme ont pu en souffrir Marc F6DWG dans l'Orne et tout récemment Dom, F6DRO, en Mayenne.

Merci à F1EQS qui nous a bien aidés et à ceux qui nous ont rendu visite (F8FKJ, F5MUM, F6BHP et un OM allemand, ainsi qu'à Mado et Daniel qui nous ont apporté le salut de F9ZG!) Le Menez Hom ce n'est pas Seigy mais...!

Pas mal de visiteurs et si vous n'avez pas d'attaché(e) de presse, emportez quelques photocopies de l'excellente feuille relative à nos activités parue dans Hyper 132 page 12 (décembre 2007). Merci une fois encore à Jean F1RJ et Maurice F6DKW sans qui je n'aurais jamais connu les plaisirs SHF.

De Jacques F6AJW

Participation peu couronnée de succès (4 QSO 3 cm: F6CBC/33, F9OE/P 29, F5LWX/P 29 et F6APE/49) à la JA (dimanche) depuis la pointe de Trévignon / 29 ; bon dégagement maritime sur plus de 200° mais altitude de quelques mètres au dessus de la mer seulement et on s'en rend compte rapidement dès que l'on rentre dans les terres (essais négatifs avec F5BUU/P et F6DRO)... Le téléphone et la 3G fonctionnaient très mal et pas du tout pour moi avec SFR ! j'ai dû emprunter l'Iphone d'Elyane pour me connecter de temps en temps à KST. Pas monté la VDS ni le 1296 MHz ; un peu trop de touristes sur le parking où j'étais installé par cette belle journée.

De Patrice F4CKC

Propagation "pourrie" dans la moyenne avec une amélioration en fin de matinée dimanche. Participation très correcte.

De Jean-Paul F5AYE

Portable en JN35BS 1600 m ASL, QRV 3, 6 et 23 cm, WX très humide, brouillard entrecoupé de ciel bleu. Au début de matinée, la JA semblait mal partie, je n'entendais pas Patrice F4CKC sur 10 GHz, ce qui ne m'était jamais arrivé; nous avons quand même pu faire le QSO en fin de matinée mais avec un rapport de 52 et toutes les stations parisiennes étaient moins fortes que d'habitude.

Mais les bretons avaient dû retrouver la recette de la potion magique!

QSO Claude F9OE 55/55 et Alain F5LWX 52/55 sur 10 GHz, F5LWX 55/58 sur 5,7 GHz 829 km! J'ai du mal à m'expliquer cette différence de propagation, tous les autres QSO ayant des rapports inférieurs ou égaux aux standards.

Au final, très bonne JA; les 3 bandes ne m'ont pas laissé un moment de répit, et j'ai même manqué des OM entendus sur la VDS.

23 cm : 18 QSO, 6 cm : 11 QSO, 3 cm 22 QSO.

J'ai inauguré et utilisé un système 3 bandes sur la parabole avec une boucle 23 cm devant le feed pour gagner encore du temps lors du déploiement de la station.

Prochainement je ferai une comparaison avec une 23 éléments.

De Jean-Claude F5BUU

Petite sortie au Prat d'Albis en JN02SV dep 09 en compagnie de Frédéric F4BXL.

Matinée dans la brume avec environ 14 degrés. Le soleil est apparu lors du départ ..., retour avec 28 degrés justifiant un stage piscine à l'arrivée.

Bonne participation mais propagation moyenne sauf avec les bretons qui jouaient fort bien du bignou depuis le 29.

Contacts difficiles avec la région parisienne même sur 13 cm pour Fred qui étrennait sa station CJ2013.

10 GHz 08/2014	DX Km	POINTS	QSO	Dept	Locator	F1AZJ/P F1BOC/P	F1BZG	F1CNE/P	F1MK/P	F1MKC/P	F1NYN/P	F1RJ	FIUSE	F4CKC/P	F4CWN	F4FSD/P	F5AYE/P	F5BUU/P	F5DQK	F5FLN/P	F5HRY	F5LWX/P	F5PL/P	F6APE	F6BVA/P	F6CBC	F6CXO	F6DO7	F6DRO	F6DZK	F6ETZ	F6FAX/P	F6HIJ	F8DE/P	G3XDY	G4ALY	G4BAO	G4CBW	G4EAT	HB9AKV/P	HB9AMH	HB9TV/P	ON4IY
F5AYE/P	829	18737	22	74	JN35BS	XX	X	X				Х)	(X	Х			X 2	X		Х	X :	X		Х		- 2	X	X	Х		X		Х	(X	(X	X	
F4BXL/P	743	18611	17	09	JN02SV	X	X		X	Х	X		X		Х		X		>	(X :	X	Х	Х	Χ		X	X					Х						Т	Т		
F9OE/P	829	15004	15	29	IN78VF	X			X		X	Χ		(X :	X					X X	(X		Χ		X	X									X	\Box	X 🗆	Т		
F5BUU/P	743	14674	18	09	JN02SV	X	X		XX	(Х		X	X	Х		Х		>	(X :	X	Х	Х	Χ	2	X	Х					Х					П	Т	T	Т	
F6APE	693	13202	20	49	IN97QI	XX	X	1	X	Х		Х)	(X				X :	X	Х			X X	(Х	Χ		X	Х			X		Х	(Х							
F1HNF/P	657	11476	18	49	IN97VE	X	X		T	Х	Х	Х	7	(X				X Z	X	Х		X :	X	Х	Х		2	X	Х			X	T	Х				T	Т	\top	T	П	
F4CKC/P	692	11305	19	95	JN19BC	X	X	1	X		Х	Х				Х	Х	1	X					Х		Χ			Х			X	1	X	Х		Х		Х			X	Х
F6DKW	655	10942	15	78	JN18CS				X	Х	Х)	(X :	X						Х	Х	Χ		Х		Х			7	XΧ	Х				П	Т	T	Х	
F5LWX/P	829	10720	10	29	IN78VF	X			X)	(X :	X					X X	(Х									Х)	X			
F5PL/P	758	10622	17	09	JN02VU	X			Χ	Х			X D	(Х		X :	X	>			Χ		Х	Х	Χ	X		X				X	Х						Т	Т		
F1MKC/P	339	6665	12	87	JN05VS	X			X		Х	Х)	(X					X	Х			2	X	Х	Х	Х								T			Т	
F1NYN/P	478	6627	13	23	JN06RH		X		Χ	Х		X		⟨ X				X Z	X								7	X			Х	X		Х						Т	Т		
F1AZJ/P	493	5906	11	52	JN28OK	Х		XX	(Х		Х			Х		X					Х						Х		X	7	X									
F1BZG	552	5707	12	45	JN07VU				X		X	Χ)	(X			X X	X)	K 🗌					Х				Х				X	>	(
F6FAX/P	418	4092	11	91	JN18DL	XX	X		X		X			X		Х	Х)	K					Х				Х														L	
F8DLS	196	1696	8	02	JN19SE	X	X	X						X		Х		ì	X								2	XX	Ĺ												L		

5,7 GHz 08/2014	DX Km	POINTS	QSO	Dept	locator	F1BZG	F1CNE/P	F1HNF/P	F1MKC/P	F1NYN/P	F4CKC/P	F5AYE/P	F5FLN/P	F5HRY	F5LWX/P	F6APE	F6BVA/P	F6CBC	F6FAX/P	G3XDY	G4ALY	G4LDR	۵W	HB9AKV/P	НВ9АМН	HB9TV/P
F5AYE/P	829	8228	11	74	JN35BS	Х	Χ				Χ			Χ	Х		Χ	Χ	Х					Х	Х	Х
F5LWX/P	829	6400	8	29	IN78VF			Χ		Χ	Χ	Χ	Χ			Χ						Χ	Χ			
F4CKC/P	477	5540	9	95	JN19BC	Х		Χ		Χ		Χ			Х	Χ			Х	Χ						Х
F6APE	693	5204	9	49	IN97QI	Х		Χ	Χ		Χ		Х		Х		Χ		Х		Χ					
F1HNF/P	657	4652	9	49	IN97VE	Х			Χ	Χ	Χ		Χ		Х	Χ	Χ		Х							
F1NYN/P	478	2919	6	23	JN06RH	Х		Χ	Χ		Χ				Х				Х							
F6FAX/P	418	2450	5	91	JN18DL			Χ		Х	Χ	Χ				Χ										
F1BZG	403	2151	5	45	JN07VU			Χ		Χ	Χ	Χ				Χ										
F1MKC/P	255	1081	3	87	JN05VS			Χ		Х						Χ										Ш

24 GHz 07/2014	DX Km	POINTS	QSO	Dept	locator	F5DQK	F6FAX/P	F4FSD/P	F4CKC/P	F5HEY
F6FAX/P	93	442	4	91	JN18DL	Х		Х	Χ	Х
F4CKC/P	70	303	3	95	JN19BC	X	Χ	Х		

Retour sur la rubrique Mémorial F6BSJ de la revue de septembre, veuillez lire : J'ai eu la visite de Serge F5SN et Christian **F0CXO** (au lieu de F6CXO) qui sont venus se documenter sur l'activité "hyper" et en particulier par réflexion sur le Mont Blanc.

6 ème JA 2014. Météo : Bonne.

Participation: Correcte

Propagation : De mauvaise à très bonne

suivant les axes.

- 10~GHz 36~stations F, 6~G, 3~HB, 1~ON

- 5,7 GHz 14 stations F, 4 G, 3 HB

- 24 GHz 5 stations F

73 Jean-Paul F5AYE